Energy Efficiency Data Mining for Wireless Sensor Networks Based on Random Forests
نویسنده
چکیده
In this paper, we propose a novel data mining technique involving random forests and random trees for energy efficiency for forest cover type classification. Novel machine learning and data mining techniques provide an unprecedented opportunity to monitor and characterize physical environments, such as forest cover type, using low cost wireless sensor networks. However, given the sheer amount of data collected by the wireless sensor networks, conventional classification schemes that demand enormous storage and computation requirements make them less effective for deployment in real world application scenarios. There is a need for intelligent and energy efficient monitoring techniques, made possible by novel data mining and classification techniques, and the work reported in this paper involves such a novel energy efficient data mining scheme for forest cover type classification based on random forests and random trees. The experimental validation of the proposed data mining scheme on a publicly available UCI machine learning dataset, shows that the proposed random forest and random tree based approach perform significantly better than the conventional statistical classifiers, such as Naïve Bayes, discriminant classifiers and decision trees, and can lead towards energy efficient, intelligent monitoring and characterization of large physical environments instrumented using wireless sensor networks.
منابع مشابه
Target Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملEnergy Efficiency and Reliability in Underwater Wireless Sensor Networks Using Cuckoo Optimizer Algorithm
Energy efficiency and reliability are widely understood to be one of the dominant considerations for Underwater Wireless Sensor Networks (UWSNs). In this paper, in order to maintain energy efficiency and reliability in a UWSN, Cuckoo Optimization Algorithm (COA) is adopted that is a combination of three techniques of geo-routing, multi-path routing, and Duty-Cycle mechanism. In the proposed alg...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملEnergy-Saving in Wireless Sensor Networks Based on Optimization Sink Movement Control
A sensor network is made up of a large number of sensors with limited energy. Sensors collect environmental data then send them to the sink. Energy efficiency and thereby increasing the lifetime of sensor networks is important. Direct transfer of the data from each node to the central station will increase energy consumption. Previous research has shown that the organization of nodes in cluster...
متن کامل